
Mars Exploration Rovers Surface Fault Protection

Tracy Neilson
Spacecraft Systems Engineering

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109, USA
tracy.a.neilson@jpl.nasa.gov

Abstract - The Mars Exploration Rovers surface fault
protection design was influenced by the need for the solar
powered rovers to recharge their batteries during the day
to survive the night. The rovers were required to
autonomously maintain thermal stability, and initiate
reliable communication with orbiting assets or directly to
Earth, while maintaining their energy balance. This paper
will describe the system fault protection design for the
surface phase of the mission, including hardware
descriptions and software algorithms. Additionally, a few
in-flight experiences are described, including the Spirit
FLASH memory anomaly and the Opportunity “stuck-on”
heater failure.

Keywords: System Fault Protection, Mars Exploration
Rovers, robotics, spacecraft surface operations

1 Introduction
NASA formally approved the Mars Exploration

Rovers (MER) project in July 2000, with less than three
years to get to the launch pad. The two rovers, Spirit and
Opportunity, launched in 2003, and successfully landed on
Mars on January 4 and January 25, 2004, respectively.
Over one year later, they continue to explore Mars in
extended mission operations.

Fault protection1 for these rovers was incorporated
into every subsystem, built into hardware and software, and
system engineered to make sure it all works well together.
Fault protection objectives and priorities varied depending
on the phase of the mission. During the cruise to Mars,
there were no time-critical events, so the system fault
protection design was required to put the spin-stabilized
spacecraft in a power positive, communicative, and
thermally stable state. During Entry, Descent, and Landing
(EDL), an extremely time-sensitive period, the fault
protection system was designed to use all available
resources to ensure a safe landing. For surface rover
operations, time was a consumable for the prime 90-sol2
mission. The fault protection design had to protect the
mission science objectives without compromising vehicle

1 Per Ref [1], fault protection refers to the treatment of faults in
the design and operation of a system. Onboard fault protection,
also known as Flight System Fault Detection, Isolation, and
Recovery, is the mitigation after faults have caused errors.
2 A sol is a Martian day, 24 hours 37 minutes long.

health. A quick recovery back to nominal operations in the
event of a fault was a primary goal.

2 System Description
The solar powered rovers require a “sleep mode” to

recharge the batteries each sol. Sleep mode includes
powering off the rover avionics, including the Central
Processing Unit (CPU), so the hardware must maintain the
safe thermal and power states. Communication requires
flight software, so the rover must reliably wake from sleep
mode and initiate communication, without intervention
from the operations team.

Figure 1: Mars Exploration Rover Detail

2.1 Rover Hardware Overview
Each rover has one Rad-6000 CPU (Rad6k). Onboard

memory includes volatile RAM (128 Mbytes) and EDAC-
protected non-volatile memory so the system can retain
data without power. The non-volatile memory consists of
256 Mbytes of FLASH memory and 11 Mbytes of
EEPROM3.

3 There is no EDAC protection on the 3 Mbytes of EEPROM that
comes with the Rad6K.

Redundant mechanical thermostats on key
components keep the system within flight allowable
temperatures. The setpoints on the thermostats are
staggered so only one heater is powered on at a time, but
the backup heater will still keep the device safe if the
primary unit fails. The operations team controls the warm-
up heaters for external actuators and camera electronics. To
protect against overheating (if a heater switch fails on or if
the rover is sleeping), a bimetallic thermostat assembly box
may cut off the heater circuit.4

Each rover’s power system has solar arrays (providing
approximately 900 W-hrs per sol at the beginning of the
surface mission), and two 8 amp-hr Li-Ion secondary
batteries. One Battery Charge Board (BCB) with two
identical sides (each dedicated to one battery) provides
protection against cell shorts and overdischarge. The
power bus is autonomously regulated by the rover shunt
limiter, which moves excess energy to the shunt circuits. If
the rover power distribution unit detects a low bus voltage,
it will power off non-essential loads, including the CPU.

The telecom system includes one Small Deep Space
Transponder (SDST), two Solid State Power Amplifiers
(SSPAs), one fixed monopole Low Gain Antenna (LGA),
one articulated High Gain Antenna (HGA) for tracking the
Earth, and one UHF radio for communicating with the
orbiting assets.

Time knowledge is maintained with a hardware-based
mission clock while the CPU is powered off. The mission
clock FPGA is powered directly from the batteries. Co-
located on this FPGA is the alarm clock, which is used to
trigger the BCB to turn on the avionics.

2.2 Communication Behavior
The rover fault protection design must establish

communication autonomously, so the fault protection takes
advantage of the flight software communication behavior.
This on-board algorithm performs all the actions required
to establish and maintain direct-to-Earth (DTE)
communication or communication with the orbiters as they
pass overhead. The operations team loads several weeks’
worth of communication windows onboard the rovers.
These windows contain all the information required to
perform the communication link, including start time,
duration, hardware configuration, and rates. The
operations team then designs the operational sequences
around these windows, or if necessary, the windows may
be modified.

Before the window transmission time, the flight
software retrieves data from non-volatile memory and
prepares the data for transmission. If requested, the flight
software will turn on HGA actuator heaters or perform a

4 Ref [2] describes the MER thermal design.

new attitude estimate by taking images of the sun. If the
window specifies the HGA, the flight software will point
the HGA to track the Earth. For either DTE or UHF
windows, the coax and waveguide transfer switches are
configured, and the X-band power amplifier or UHF is
turned on at transmit time. The flight software then feeds
packetized telemetry to the radio. At the end of the
window, the flight software stows the HGA (if it was the
selected antenna) and turns off the transmitter. The
receiver stays on while the rover is awake, so the rover
remains commandable through the LGA.

2.3 Shutdown and Wakeup Behavior
The backbone of the surface fault protection is the

autonomous shutdown and wakeup behavior. This
algorithm wakes up the rover when the solar arrays can
support the loads required for communication (in receive
mode), and it puts the rover back to sleep once the solar
arrays alone can no longer support those loads. This
strategy maximizes the time for communication with Earth,
while still allowing the battery to charge. The amount of
energy supplied by the batteries during the night for
survival heating is minimized because energy is dissipated
inside the rover during the day, and then used as thermal
inertia during the night.

Shutdown refers to shutting down the CPU and the
avionics. The BCB stays powered, as well as the mission
clock and alarm clock. Warm-up heaters and two of the
science instruments may also stay on while the rest of the
rover sleeps.

During nominal operations, the operations team
designs sequences that command shutdowns and include
wakeup times to resume the sequence. Upon each
commanded shutdown, flight software examines the
desired time to resume the sequence and the time of the
next communication window, and then sets the alarm clock
to the earlier time.

Two triggers may wake up the rovers: Solar wakeup
or the alarm clock. The BCB declares the solar wakeup
after the solar array current has been greater than 2.0 amps
for over 10 minutes (and at least 16 hours have passed
since the last solar wakeup). The BCB responds to either
wakeup signal by turning on the CPU.

Autonomous shutdown mode is invoked when
sequences are inactive or in stasis. In this mode, the flight
software will start the shutdown process if there is no
communication window active, and either the solar array
current is lower than a configurable parameter or the
vehicle has been awake too long. If it is time to shut down,
the alarm clock is again set such that the vehicle will be
ready for the next communication window or for the
sequence to resume.

Figure 2 describes a typical day in autonomous mode,
with alarm clock wakeups for the UHF passes and solar
wakeup at 09:00 Local Solar Time (LST). Solar wakeup
could occur almost anytime in the morning, depending on

the time of year, the atmospheric dust, the dust on the solar
panels, and the tilt of the rover. In this scenario, the DTE
windows occur while the rover is still awake, but the rover
will wake up for any communication window if necessary.

Figure 2: Autonomous shutdown and wakeup scenario

Figure 3: Surface fault protection overview

2.4 Surface Fault Protection Overview
Fault protection on the rovers is handled in a number

of ways. This section provides an overview of the rovers’
on-board fault protection and gives examples of a few of
the responses to faults (refer to Figure 3).

The hardware protection is always available. For
example, the BCB FPGA can remove a battery from the
bus if it detects a low cell voltage, or the BCB can disable
the battery from charging if it detects a cell overcharge.

The flight software may try to establish a hardware
state several times if the read-back state doesn’t match the
predicted state. In other cases, the software may just mark
the data “suspect” so other parts of the flight software may
take appropriate action. For example, if the flight software
detects parity errors in the BCB data, it can mark the data
“bad”. The autonomous shutdown algorithm then
disregards the information from that side of the BCB.

Subsystem level fault protection may declare a
function unusable. For example, if a motor overheats while
moving the IDD (Instrument Deployment Device or
“arm”), the flight software declares an IDD error. Other
sequences continue, but commands to move the IDD are
rejected. If the arm is not in the stowed configuration, the
vehicle safety check will not allow driving, but unrelated
activities (such as panorama camera imaging or
communication windows) are allowed to continue.

If faults are detected in the X-band telecom system or
there are problems pointing the HGA, the fault response
will convert the HGA windows to use the LGA with lower
data rates, at the same scheduled time.

System fault responses take advantage of the
autonomous shutdown/wakeup behavior and the
communication behavior to put the rover in a power-safe,
thermal-safe, and communicative state. Responses to flight
software resets, thermal faults, power faults, and no uplink
are examples of responses that use autonomous shutdown
and the communication behavior.

Software errors are detected either within the
applications or by a software health function that
continuously checks for unresponsive or suspended tasks.
If severe errors are detected, the flight software will force a
reset of the flight computer, causing a flight software
initialization. The system response (after initialization)
turns off science instruments and warm-up heaters.
Survival heaters are reinforced on and all sequences are
deactivated. After a flight software reset, the vehicle
continues to perform scheduled communication windows in
autonomous shutdown mode.

If the flight software detects a severe error during the
initialization process, it will delay the reset until a

minimum time period has passed. This “delayed reset” is
intended to allow the operations team to intervene. If the
flight software continues to reset, the system will modify
the delayed reset time interval and the boot logic tries
alternating copies of the flight software.

The response to low batteries or power faults does not
use the scheduled communication windows. If the rover is
awake when a low battery situation occurs, the flight
software has 60 seconds to quickly shut down before the
BCB removes the batteries from the power bus. If it is
nighttime when the BCB detects a low battery condition,
the BCB takes the battery offline and the power bus
crashes. Eventually, when the sun rises, the solar array
power supports the bus and the BCB. As the batteries
charge back up, the BCB puts them back online to support
the bus. At the next solar wakeup, the flight software
schedules one LGA communication window at a
predetermined hour (11:00 LST) to report to Earth. No
UHF windows are attempted because these usually occur in
the early morning or late afternoon, when the available
solar power is low. The vehicle remains in this
configuration (with autonomous shutdown mode active, in
receive mode via the LGA, performing one DTE window
per day) until the operations team reconfigures the vehicle
to resume normal operations.

An uplink loss fault is declared upon the expiration of
the uplink loss timer. The operations team sets this timer
every sol, with a value roughly equal to three sols in the
future. The operations team may debug problems without
resetting the timer, but if unsuccessful, the fault response
takes over at timer expiration. The response deactivates all
sequences to initiate autonomous shutdown mode and
schedules an 11:00 LST DTE window. The difference
from the low battery response is that the uplink loss
response also executes the UHF windows and uses
different telecom configurations.

The flight software arbitrates if various fault
responses conflict. For example, the system reacts to a low
battery event by shutting down immediately, then
autonomously performs only one communication window a
day. If, after several days, the operations team still hasn’t
regained control of the vehicle, the uplink loss response
will initiate more communication windows, including those
with the overhead orbiters.

3 In-flight Experience
The rovers have experienced subsystem level

problems with driving, pointing the cameras, operating the
science instruments, and placing the IDD. In these cases,
the flight software appropriately marked those activities
“unusable” and the sequences continued on. The more
severe system level fault experiences are described in this
section.

3.1 Cruise Solar Flare
Although this event happened during the cruise phase

of the mission, the operations team invoked a surface-
designed behavior to recover the vehicles. On October 28,
2003, while both rovers were on their way to Mars, a large
coronal mass ejection (solar storm) occurred. Star scanners
on both Spirit and Opportunity were saturated and 3-axis
attitude knowledge was lost. The flight software dropped
the attitude determination mode back to a 2-axis view using
only the sun sensor.

Another Mars spacecraft, the Odyssey orbiter,
detected corrupted RAM due to the same solar storm.
Since the MER vehicles do not have a “RAM scrubber”
detection mechanism, there was a fear that there might be
corrupted areas of RAM which were not accessed during
cruise, but would be used during EDL. The only way to
clear any solar flare-induced upset and to ensure a clean
memory was to power cycle the CPU. Rather than deal
with the unknown, the MER Project opted to respond as if
there was a problem. This involved manually power
cycling the CPU on both vehicles, using a shutdown
command, which forced all the hardware and software
memory checks to run and map around any damaged RAM.
Wakeup was successfully triggered by the alarm clock, the
BCB turned on the CPU, and the flight software booted and
initialized without incident. No memory corruption was
detected on either vehicle. The operations team
successfully commanded the spacecraft back to the 3-axis
attitude knowledge mode.

3.2 Flight Software Initiated Resets
Both Spirit and Opportunity have suffered flight

software-initiated resets on Mars. Only the first events will
be addressed in this paper. Spirit’s first reset was the
FLASH memory anomaly described later and
Opportunity’s first reset is described here.

During solar conjunction, the operations team was
performing a commanding experiment when Opportunity’s
processor reset. When the rover receives a command, the
hardware command decoder (HCD) checks for errors. The
HCD corrects all single-bit errors and flags all double-bit
errors to the flight software. If three or more errors exist,
the HCD Single Error Correct/Double Error Detect code is
overwhelmed and it may erroneously 'correct' already
corrupted codeblocks or it may not detect any codeblock
corruption. In either case, corrupted codeblocks may be
passed to flight software without being flagged as such by
the hardware. If it is passed a bad code block, the flight
software has an error in which the length field from the
uplink protocol is not checked for validity before use. The
anomaly team concluded that this was the probable cause
of the reset.

3.3 Spirit FLASH Memory Anomaly
After 17 sols of successful operations, Spirit’s DTE

signal suddenly dropped out. Originally, blame was placed
on weather at the Deep Space Network tracking station, but
the next few communication windows failed to produce
any signal. One UHF window produced only pseudo noise,
indicating that the vehicle had woken up and turned on the
radio. The anomaly team sent commands to Spirit, and it
occasionally responded with a carrier-only signal.

Finally, on Sol 21, Spirit sent enough telemetry for
the team to deduce that the rover was rebooting over and
over and that it was not successfully accessing the FLASH
memory. The battery state-of-charge and the thermal
telemetry indicated that the rover had not shut down
overnight. The operations team commanded an emergency
shutdown, but that command failed.

The next sol, the anomaly team sent a command to
place the rover in “crippled mode.” In this mode, the flight
software does not use the FLASH memory file system.
This command appeared to fail as well, because the rover
would not respond to any commands. An hour later, the
rover autonomously initiated DTE communication at 11:00
LST, the fault window time. The batteries had drained
overnight, so the BCB had disconnected them from the
power bus, and the rover browned out (as expected).
During this window, the anomaly team verified that Spirit
had stopped rebooting, proving that the crippled mode
command had indeed worked. Crippled mode is a volatile
configuration, reset each shutdown, so the operations team
had to repeat the command each sol to prevent the
continuous reboots, until the anomaly team could come up
with a fix.

After reconstructing the small amount of telemetry
retrieved from non-volatile memory, the anomaly team
determined that Spirit experienced only three reboots on
the first sol. The repeating reset condition started early the
next sol, when the rover woke up for the UHF window.

Within a week, the anomaly team determined that the
problem was a design error in the DOS file system library
code. The file system mechanism uses a representation of
the file system structure (i.e., a Table of Contents or TOC)
in RAM, to optimize performance. This TOC is essentially
an array with the file name, attributes, date, time, file size,
and a pointer to the starting point of the file/directory in the
FLASH memory.

When a file is deleted from the file system, the TOC
is changed to reflect that the file has been deleted, but the
size of the TOC does not shrink. Even though the data
management team rigorously managed and deleted files,
the TOC retained the knowledge of all the files that ever
existed in FLASH file system. So after collecting
telemetry for seven months of cruise, one day of EDL, one

week of deployments, standup and egress, and one week of
driving and science, the TOC grew to consume all the
available RAM.

This growth was not supposed to occur.
Configuration errors in the flight software allowed the TOC
to expand unbounded. When the out-of-memory condition
occurred, a critical task silently suspended (the silence was
another error in the code). With this critical task
suspended, many functions that access the file system were
blocked from working correctly. In particular, the
shutdown algorithm could not power off the CPU, even
though the “delayed reset” allowed enough time.

Each time the out-of-memory event occurred, the
system would reset (after the delayed reset time). Many of
the on-board communication windows and the operation
team’s commanded windows were interrupted by these
resets. The reason a reset or the use of a different flight
software image wouldn’t clear the problem is that the TOC
is recreated during initialization when the FLASH memory
is mounted, causing another out-of-memory event.
Crippled mode stopped the resets because the FLASH file
system is not used in this mode, and this TOC is not
created.

Two weeks after the first symptoms were observed,
the anomaly team reformatted the FLASH memory (which
also deleted the TOC), so upon initialization, the size of the
recreated TOC was small again. Spirit was temporarily
cured. For the next two months, the problem was avoided
by careful management of the total number of files allowed
in the FLASH file system. A new flight software load
eventually fixed the deleted-file-representation problem in
the TOC, as well as other vulnerabilities in the system.5

3.4 Opportunity’s Failed-on Heater
On Opportunity’s first evening on Mars (the same day

Spirit was put into crippled mode), the power team
observed an unexpected 0.5 amp current, which appeared
around 23:00 LST and disappeared around 09:30 LST. The
battery state-of-charge was also lower than predicted. The
anomaly team investigated and discovered a failed-on
(closed) heater switch for an IDD joint. The external
thermostat box cuts off the heater circuit when the external
temperatures warm up, but allows the heater to turn on
when the temperature cools down (per design). Multiple
attempts to open the switch failed. The effect was an extra
180 W-hrs of precious energy consumed every night.

The corrective action was to implement a flight
software modification that would purposefully remove the
batteries from the power bus at night and power off all of
the devices, including the BCB and survival heaters. The
algorithm is called “deep sleep” and, when enabled, it

5 See Ref. [3] for more details on this anomaly.

autonomously boots up the vehicle at 18:30 LST each night
to pull the batteries offline. The reason the algorithm does
not remove the batteries from the power bus whenever any
shutdown occurs, is that the BCB hardware fault protection
will put the batteries back online when it detects the bus
voltage dropping as the sun sets. So the deep sleep
algorithm has to wait for the sun to set low enough that no
current is available from the solar arrays. The operations
team can temporarily disable deep sleep mode if an early
morning UHF communication window is scheduled.

4 Conclusion
The MER surface fault protection design is

incorporated throughout the flight system, in both hardware
and software. Autonomously, the rovers maintain a safe
thermal and energy balance, as well as communicate to
orbiting assets or directly to Earth. Throughout cruise,
landing, and over one year of surface operations, the
overall system has met many challenges and proven itself
in practice on Mars.

5 Acknowledgements
The entire MER design team deserves praise for

producing a robust rover design. For making the MER
fault protection design truly work as a system, a few core
individuals deserve recognition: Adrian Adamson, James
Donaldson, Glenn Reeves, Joseph Snyder, and Jason
Willis.

The rover design described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

6 References
[1] Fault Protection for JPL Deep Space Missions, G.

Mark Brown, Planning Session for MSL Rover Autonomy
Validation Workshop, Pasadena, CA, March 3, 2003.

[2] Mars Exploration Rover: Thermal Design is a
System Engineering Activity, G. Tsuyuki, A. Avila, H.
Awaya, R. Krylo, K. Novak, C. Phillips, 2004-01-2411
2004© SAE International.

[3] The Mars Rover Spirit FLASH Anomaly, G.
Reeves, T. Neilson, 0-7803-8870-4/05© 2005 IEEE paper
#1426.

